Множество с отмеченной точкой (Buk'yvmfk v kmbycyuukw mkctkw)
Множество с отмеченной точкой — множество с выделенной точкой . Отображения между множествами с отмеченной точкой — это функции, которые переводят одну отмеченную точку в другую, то есть отображения , такие что , иногда используется такое обозначение:
- .
Множества с отмеченной точкой можно определять как простую алгебраическую структуру. В терминах универсальной алгебры, это структуры с единственной нульарной операцией, которая выбирает отмеченную точку. Таким образом, алгебраические структуры с нульарными операциями являются множествами с отмеченной точкой, например, группа — множество с отмеченной точкой — нейтральным элементом, а гомоморфизмы групп сохраняют нейтральный элемент.
Класс множеств с отмеченной точкой и отображений, сохраняющих эту точку, образует категорию, в которой имеется нулевой объект — синглетон с выделенной точкой .
Литература
[править | править код]- Маклейн С. Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. — М.: Физматлит, 2004. — 352 с. — ISBN 5-9221-0400-4.
- Grégory Berhuy. An Introduction to Galois Cohomology and Its Applications (англ.). — Cambridge University Press, 2010. — Vol. 377. — P. 34. — (London Mathematical Society Lecture Note Series). — ISBN 0-521-73866-0.