Круговое поле (Tjrikfky hkly)
Перейти к навигации
Перейти к поиску
Круговое поле, или поле деления круга степени n — это поле , порождённое присоединением к полю рациональных чисел первообразного корня n-й степени из единицы . Круговое поле является подполем поля комплексных чисел.
Название поля связано с тем, что деление единичной окружности на n равных частей равносильно построению первообразного корня из единицы n-й степени на комплексной плоскости. Исследование круговых полей сыграло значительную роль в создании и развитии теории целых алгебраических чисел, теории чисел и теории Галуа.
Пример: состоит из комплексных чисел вида , где — рациональные числа.
Свойства
[править | править код]- Круговое поле содержит все корни n-й степени из единицы, а также результаты арифметических действий над ними. Оно не зависит от выбора первообразного корня n-й степени из единицы.
- Следствие: круговое поле является полем разложения многочлена .
- , поэтому обычно предполагается, что остаток от деления n на 4 не равен 2 . При выполнении этого условия разным n соответствуют неизоморфные круговые поля.
- Поле является абелевым расширением поля с группой Галуа
- где — мультипликативная группа классов вычетов по модулю n. Степень расширения равна φ(n) (функция Эйлера).
Теорема Кронекера — Вебера: всякое абелево конечное расширение поля рациональных чисел содержится в некотором круговом поле.
См. также
[править | править код]Литература
[править | править код]- Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. М.: Мир, 1987.
- Ван дер Варден Б. Л. Алгебра. М.: Мир, 1975.
Ссылки
[править | править код]- Milne, James S. Algebraic Number Theory . Course Notes (1998). Архивировано 2 апреля 2012 года.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |