Комплексная амплитуда (Tkbhlytvugx gbhlnmr;g)

Перейти к навигации Перейти к поиску

Компле́ксная амплитуда (англ. phasor) — комплексная величина, модуль и аргумент которой равны соответственно амплитуде и начальной фазе гармонического сигнала.

Определение

[править | править код]

Пусть имеется гармонический сигнал:

Сумма двух комплексных величин в виде вращающихся векторов

где A — амплитуда сигнала, ω — циклическая частота, ϕ — начальная фаза.

Над сигналами, записанными в подобной форме, алгебраически неудобно производить такие арифметические операции, как сложение двух сигналов, вычитание из одного сигнала другого сигнала. С целью облегчения этих операций гармонические сигналы представляют в виде комплексного числа, модуль которого равен амплитуде сигнала, а аргумент — фазе сигнала. Воспользовавшись формулой Эйлера:

.

Оригинальный сигнал a(t) равен действительной части данного комплексного числа:

При этом ,

тогда комплексная амплитуда гармонического сигнала определяется следующим выражением:

.

Физический смысл

[править | править код]

Алгебраическая форма

[править | править код]

Если рассматривать комплексную амплитуду как комплексное число в алгебраической форме, то действительная часть соответствует амплитуде косинусной (синфазной) компоненты, а мнимая — амплитуде синусной (квадратурной) компоненты исходного сигнала. Так, для сигнала (1) имеем:

где

Тригонометрическая форма

[править | править код]

Если рассматривать комплексную амплитуду как комплексное число в тригонометрической форме, то модуль соответствует амплитуде исходного гармонического сигнала, а аргумент — сдвигу фазы исходного гармонического сигнала относительно сигнала .

Операции над комплексной амплитудой

[править | править код]

К сигналам в пространстве комплексных амплитуд могут быть применены линейные операции. Другими словами, перечисленные ниже операции над комплексными амплитудами:

  • умножение комплексной амплитуды на константу
  • сложение комплексных амплитуд (соответствующих одной и той же частоте)
  • вычитание комплексных амплитуд (соответствующих одной и той же частоте)
  • интегрирование комплексной амплитуды по времени
  • дифференцирование комплексной амплитуды по времени

приводят к такому же результату, как если бы они были проделаны над соответствующими гармоническими сигналами, а затем от них взята комплексная амплитуда.

Ограничения

[править | править код]

Несмотря на то, что в выражение для комплексной амплитуды не входит частота ω гармонического сигнала, следует помнить, что комплексная амплитуда описывает гармонический сигнал конкретной частоты. Поэтому в пространстве комплексных амплитуд недопустимы операции, которые:

  • принимают в качестве операндов комплексные амплитуды, описывающие гармонические сигналы разных частот.
  • меняют частоту гармонического сигнала или порождают новые частоты (все нелинейные операции, например, перемножение двух сигналов).

Применение

[править | править код]

Комплексная амплитуда является полным и очень удобным способом описания гармонических сигналов, поскольку:

  • Характеризует и амплитуду, и фазу
  • Не содержит зависимости от времени
  • Позволяет использовать векторные диаграммы для анализа цепей на переменном токе

Использование комплексных амплитуд и импедансов позволяет свести задачу прохождения гармонического сигнала через линейную цепь (описывается системой дифференциальных уравнений) к более простой задаче, эквивалентной анализу цепи из резисторов на постоянном токе (описывается системой алгебраических уравнений).