Индекс потребительской лояльности NPS (Nu;ytv hkmjyQnmyl,vtkw lkxl,ukvmn NPS)
Индекс NPS (англ. Net Promoter Score) — индекс определения приверженности потребителей товару или компании / бренду (индекс готовности рекомендовать). Он используется для оценки готовности к повторным покупкам. Является одним из главных индексов измерения клиентской лояльности.
Измерение индекса лояльности NPS включает в себя несколько шагов.
- Потребителям предлагается ответить на вопрос «Какова вероятность того, что Вы порекомендуете компанию/товар/бренд своим друзьям/знакомым/коллегам?» по 10-балльной шкале, где 0 соответствует ответу «Ни в коем случае не буду рекомендовать», а 10 — «Обязательно порекомендую».
- На основе полученных оценок все потребители разделяются на 3 группы: 9-10 баллов — сторонники (promoters) товара/бренда, 7-8 баллов — нейтральные потребители, 0-6 баллов — критики (detractors).
- Непосредственно расчёт индекса NPS. NPS = % сторонников — % критиков.
- Для получения практических выводов всем участникам опроса задается второй вопрос NPS: "Назовите основную причину вашей оценки?" Ответы на этот вопрос позволяют компаниям определить наиболее важные факторы, влияющие на формирование потребительской лояльности, опираясь на мнение клиентов.
- Для анализа влияния факторов лояльности (цена, качество, сервис и т. п.) на значение и динамику индекса может быть использован каскадный метод NPS. В зависимости от ответа на вопрос об основной причине оценки, клиенты объединяются в группы со схожим фактором лояльности (f-группы). Для каждой f-группы рассчитывается ее доля в клиентской базе (Wf,%) и ее индекс лояльности (NPSf). Чем больше доля f-группы в клиентской базе, тем большее влияние данный фактор оказывает на общий уровень лояльности. Чем ниже значение NPS у f-группы, тем более негативный клиентский опыт формирует данный фактор лояльности (связанные с ним точки контакта). NPS всей клиентской базы = Σ Wf * NPSf Формула расчета NPS каскадным методом дает то же самое значение индекса, что и классическая формула, но позволяет определять структурные составляющие лояльности, а также связать математически NPS top-down (рыночный NPS) и значения индексов NPS bottom-up (NPS точек касания).
Измерение по шкале 0-10 является классическим, при этом допускается использование шкалы 1-3, 0-5, 1-5 для решения задач внутри конкретного Опроса.
История
[править | править код]Основоположником метода считается Фредерик Райхельд, который впервые анонсировал его в статье The One Number You Need to Grow, опубликованной в журнале Harvard Business Review[1] в декабре 2003 года. В 2006 году он выпустил книгу под названием «The Ultimate Question: Driving Good Profits and True Growth», которая на российском рынке известна как «Книга о настоящей прибыли и реальном росте» (2007 год). В ней он продолжил свои рассуждения на тему лояльности, прибыльности и роста компании.
В 2001 году Райхельд проводил исследование более чем в 400 компаниях Америки, где основной задачей было измерение влияния лояльности клиентов (мерилась NPS) на её темпы роста. Основным результатом стал вывод, что средний показатель NPS по рынку в отраслях был 16%, но у таких компаний как eBay и Amazon NPS равнялся 75%. Райхельд не говорит о том, что связь присутствует повсеместно, она отсутствует вовсе на монополистических рынках. Однако такие есть отрасли, как пассажирские авиаперевозки, страхование и аренда автомобилей стали ярким примером взаимосвязи. Эти компании являются сервисными, где от уровня обслуживания клиента зависит его удовлетворенность и лояльность.
Адептами данной технологии стали многие компании, в число которых входят GE, «Allianz», «P&G»,«Intuit», «Apple», «American Express», «Philips», «EBay», «Amazon» и др. На российском рынке эту технологию применяют такие компании, как «BestDoctor», «Ростелеком», «Ozon», «Страховая Группа МСК», «АльфаСтрахование», «Красный Куб», «Мегафон Северо-Запад», «МТС», «1С-Битрикс» «РОСНО», «МИАН», «TELE2», банк «Хоум Кредит», «QIWI» и другие.[2]
В 2021 году учёные из Великобритании и Ирландии опубликовали в Журнале Академии маркетинговых наук исследование под названием «The use of Net Promoter Score (NPS) to predict sales growth: insights from an empirical investigation»[3]. В результате эмпирического анализа была выявлена взаимосвязь между ростом NPS и краткосрочным увеличением продаж. Оказалось, что увеличение NPS на один пункт предсказывает рост продаж на 1.46% в следующем рабочем квартале[4]. При этом изменение NPS не позволяет прогнозировать продажи в течение более длительного периода (например, года).
Критика
[править | править код]Хотя NPS приобрел популярность среди руководителей предприятий и считается широко используемым инструментом для измерения лояльности клиентов на практике, он также вызвал споры в академических кругах и кругах, занимающихся исследованием рынка[5]. Научная критика ставит под сомнение, является ли NPS надежным предсказателем роста компании[6]. Исследователи отметили, что нет эмпирических доказательств того, что вопрос «вероятность рекомендовать» является лучшим предиктором роста бизнеса, чем другие вопросы лояльности клиентов (например, общая удовлетворенность, вероятность повторной покупки и т.п.) и следовательно ничем по сути не отличается от других вопросов, связанных с лояльностью[7]. Несколько исследований показали, что существует незначительная статистическая разница в надежности, валидности или различающей способности между NPS и другими показателями[8].
Примечания
[править | править код]- ↑ Reichheld, Frederick F. One Number You Need to Grow (англ.) // Harvard Business Review : magazine. — 2003. — December. Архивировано 10 марта 2013 года.
- ↑ LOYALTY.INFO. LOYALTY.info - Эффективные программы лояльности - Как привлечь и удержать клиента . www.loyalty.info. Дата обращения: 10 сентября 2015. Архивировано из оригинала 4 марта 2016 года.
- ↑ Sven Baehre, Michele O’Dwyer, Lisa O’Malley, Nick Lee. The use of Net Promoter Score (NPS) to predict sales growth: insights from an empirical investigation (англ.) // Journal of the Academy of Marketing Science. — 2021-07-05. — ISSN 1552-7824. — doi:10.1007/s11747-021-00790-2.
- ↑ Индекс лояльности клиента NPS и прогнозирование роста бизнеса . Блог SEO-аспиранта (25 августа 2021). Дата обращения: 25 августа 2021. Архивировано 25 августа 2021 года.
- ↑ Atilla Wohllebe; Florian Ross; Szilárd Podruzsik. Influence of the net promoter score of Retailers on the Willingness of Consumers to Install Their Mobile App (англ.) // International Journal of Interactive Mobile Technologies : журнал. — 2020. — November (vol. 14, no. 19). — P. 124-139. — doi:10.3991/ijim.v14i19.17027. Архивировано 7 октября 2021 года.
- ↑ Timothy L. Keiningham; Bruce Cooil; Tor Wallin Andreassen; Lerzan Aksoy. [https://pdfs.semanticscholar.org/dfe0/4f3d83fee37a617d9cacfebc331605dc4bfc.pdf A Longitudinal Examination of Net Promoter and Firm Revenue Growth] (англ.) // Jourlal of marketing : журнал. — 2007. — 2007 07 (vol. 71, no. 3). — P. 39-51. Архивировано 16 июля 2020 года.
- ↑ Hayes. The True Test of Loyalty (англ.) // Quality Progress. — 2008. — June. — P. 20-26.
- ↑ Preston, Carolyn C.; Colman, Andrew M. Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences (англ.) // Acta Psychologica. — 1999. — September (no. 104). — P. 1-15. — doi:10.1016/S0001-6918(99)00050-5. — PMID 10769936. Архивировано 7 марта 2022 года.