Изолированная точка множества (N[klnjkfguugx mkctg buk'yvmfg)
Перейти к навигации
Перейти к поиску
Изоли́рованная то́чка в общей топологии — это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки.
Определение
[править | править код]Пусть дано топологическое пространство , и подмножество . Точка называется изолированной точкой множества , если существует окрестность такая, что
Связанные определения
[править | править код]- Пространство, каждая точка которого является изолированной, является дискретным
Свойства
[править | править код]- Произвольная функция , где — множество с собственной топологией, всегда непрерывна в изолированной точке .
Примеры
[править | править код]Пусть — множество вещественных чисел с стандартной топологией.
- Если , то точка является изолированной, а все остальные нет.
- Если то не является изолированной точкой, а все остальные ими являются.
- Множество натуральных чисел дискретно.
- Множество рациональных чисел не имеет изолированных точек. В частности, оно не является дискретным, хотя и является счётным.
- Существуют неприводимые многочлены от двух переменных f(x,y), графики которых (т.е. множество точек плоскости, в которых f(x,y)=0) содержат одну или несколько изолированных точек. Например, график функции y^2 = x^2*(x-1) состоит из кривой, лежащей в полуплоскости x>1, и изолированной точки (0;0).