Гиперэллиптическая поверхность (Inhyjzllnhmncyvtgx hkfyj]ukvm,)

Перейти к навигации Перейти к поиску

Гиперэллиптическая или биэллиптическая поверхность — это поверхность, морфизм Альбанезе которой является эллиптическим расслоением[англ.]. Любая такая поверхность может быть записана как факторгруппа произведения двух эллиптических кривых по конечной абелевой группе. Гиперэллиптические поверхности образуют один из классов с размерностью Кодайры[англ.] 0 в классификации Энриквеса — Кодайры.

Инварианты

[править | править код]

Размерность Кодайры равна 0.

Ромб Ходжа:

1
1 1
0 2 0
1 1
1

Классификация

[править | править код]

Любая гиперэллипическая поверхность является фактором , где , F — эллиптические кривые, а G — подгруппа группы F (действующая на F переносами). Существует семь семейств гиперэллиптических поверхностей.

Порядок K G Действие G на E
2 Любая
2 Любая
3
3
4
4
6

Здесь  — первообразный кубический корень из 1, а i — примитивный корень 4-й степени из 1.

Квазигигиперэллиптические пространства

[править | править код]

Квазигигиперэллиптическое пространство — это поверхность, канонический дивизор которого численно эквивалентен нулю, отображение Альбанезе[англ.] отображает в эллиптическую кривую, а все его слои являются рациональными кривыми с каспами. Они существуют только в характеристиках 2 или 3. Их второе число Бетти равно 2, второе число Чженя равно нулю, как и голоморфная эйлерова характеристика[англ.]. Классификацию провели Бомбиери и Мамфорд[1], которые нашли шесть случаев в характеристике 3 (в этом случае 6K= 0) и восемь случаев в характеристике 2 (в этом случае равно нулю 6K или 4K). Любая квазиэллиптическая поверхность является фактором , где E — рациональная кривая с одним каспом, F является эллиптической кривой, а G является конечной групповой подсхемой[англ.] группы F (действующей на F переносами).

Примечания

[править | править код]

Литература

[править | править код]
  • Wolf P. Barth, Klaus Hulek, Chris A.M. Peters, Antonius Van de Ven. Compact Complex Surfaces. — Springer-Verlag, Berlin, 2004. — Т. 4. — (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.). — ISBN 978-3-540-00832-3.
  • Arnaud Beauville. Complex algebraic surfaces. — 2nd. — Cambridge University Press, 1996. — Т. 34. — (London Mathematical Society Student Texts). — ISBN 978-0-521-49510-3.
  • Enriques' classification of surfaces in char. p. III. // Inventiones Mathematicae. — 1976. — Т. 35. — С. 197–232. — ISSN 0020-9910. — doi:10.1007/BF01390138.
  • Complex analysis and algebraic geometry. — Tokyo: Iwanami Shoten, 1977. — С. 23–42.