Большие дополнительные измерения (>kl,ony ;khklunmyl,udy n[byjyunx)

Перейти к навигации Перейти к поиску

Большие дополнительные измерения, ADD,LED — собирательное название теорий физики элементарных частиц, предполагающих что четырёхмерное пространство-время Стандартной модели располагается на бране, погруженной в многомерное пространство, включающее, помимо четырёхмерного пространства-времени, большие или бесконечные дополнительные измерения. Электромагнитное, сильное и слабое взаимодействия действуют внутри четырех измерений этой браны, а гравитоны, кроме того, могут распространяться через дополнительные измерения. Предполагается, что на основе таких теорий можно найти решение ряда физических проблем: проблемы иерархии, проблемы космологической постоянной и т.д.[1][2][3] Идея больших дополнительных измерений была выдвинута Нимой Аркани-Хамедом, Савасом Димопулосом и Джиа Двали в 1998 году.[4][5] Предполагается, что излучение гравитонов в дополнительные измерения позволит экспериментально проверить теорию больших дополнительных измерений на современных ускорителях при энергиях столкновения порядка ТэВ.[1][6] Один из способов проверить теорию заключается в столкновении двух протонов в Большом адронном коллайдере или электрона и позитрона в электронном ускорителе так, чтобы при их столкновении образовался гравитон, который мог бы излучиться в дополнительные измерения, что привело бы к уменьшению наблюдаемой энергии и поперечного импульса.[1] До сих пор ни один эксперимент на Большом адронном коллайдере не обнаружил подобного эффекта.[7][8][9][10][11][12]

Проблема иерархии

[править | править код]

Традиционно в теоретической физике энергия Планка является самой высокой энергией, и все энергии измеряются в долях энергии Планка. Существует большой разрыв между энергией гравитационных, электрослабых взаимодействий и энергией Планка (проблема иерархии).[1] В теориях больших дополнительных измерений фундаментальным параметром является не планковская масса, а массовый масштаб многомерного гравитационного взаимодействия, который может быть значительно меньше планковской массы[1] Если фундаментальный масштаб гравитационного взаимодействия близок к масштабу электрослабого взаимодействия, проверка фундаментальной теории квантовой гравитации, такой как теория струн, может быть осуществлена на таких коллайдерах, как Теватрон или БАК. [13][14][12][15][16][17][18][19][20][21][22]

Теория больших дополнительных измерений даёт альтернативное принятому в Стандартной модели объяснение механизма качелей для массы нейтрино.[23][24][25][26]

Распад протона

[править | править код]

Серьёзной проблемой теорий больших дополнительных измерений является распад протона за очень малое время в случае масштаба квантовой гравитации порядка нескольких ТэВ.[1] Она решается введением дискретных калибровочных симметрий. [27][28][29][30][31]

Экспериментальная проверка

[править | править код]

Анализ экспериментальных данных, полученных на Большом адронном коллайдере, сильно ограничивает допустимые параметры теорий с большими дополнительными измерениями.[7][8][9][10][11][12]

Коллаборация Fermi-LAT в 2012 году опубликовала ограничения для больших дополнительных измерений, полученные в результате астрофизических наблюдений нейтронных звезд. Если масштаб объединения всех фундаментальных взаимодействий в ADD равен TeV, то при числе дополнительных измерений представленные ей результаты подразумевают, что топология компактификации более сложная, чем тор, т.е. все большие дополнительные измерения имеют одинаковый размер. Для плоских больших дополнительных измерений одинакового размера допускаются лишь .[32][33]

Примечания

[править | править код]
  1. 1 2 3 4 5 6 Рубаков В. А. "Большие и бесконечные дополнительные измерения" // УФН, т. 171, с. 913–938 (2001)
  2. Барвинский А. О. "Космологические браны и макроскопические дополнительные измерения" // УФН, т. 175, с. 569–601 (2005)
  3. Shifman, M. (2010). "Large Extra Dimensions: Becoming Acquainted with an Alternative Paradigm". International Journal of Modern Physics A. 25 (2n03): 199—225. arXiv:0907.3074. Bibcode:2010IJMPA..25..199S. CiteSeerX 10.1.1.314.3579. doi:10.1142/S0217751X10048548.
  4. N. Arkani-Hamed; S. Dimopoulos; G. Dvali (1998). "The Hierarchy problem and new dimensions at a millimeter". B429 (3—4): 263—272. arXiv:hep-ph/9803315. Bibcode:1998PhLB..429..263A. doi:10.1016/S0370-2693(98)00466-3. {{cite journal}}: Cite journal требует |journal= (справка)
  5. N. Arkani-Hamed; S. Dimopoulos; G. Dvali (1999). "Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity". Physical Review. D59 (8): 086004. arXiv:hep-ph/9807344. Bibcode:1999PhRvD..59h6004A. CiteSeerX 10.1.1.345.9889. doi:10.1103/PhysRevD.59.086004.
  6. Hossenfelder, Sabine Backreaction: Large Extra Dimensions – Not Dead Yet. Backreaction (21 декабря 2012). Дата обращения: 3 апреля 2019. Архивировано 3 апреля 2019 года.
  7. 1 2 CMS Collaboration (2011). "Search for Microscopic Black Hole Signatures at the Large Hadron Collider". Physics Letters B. 697 (5): 434—453. arXiv:1012.3375. Bibcode:2011PhLB..697..434C. doi:10.1016/j.physletb.2011.02.032.
  8. 1 2 CMS Collaboration (2012). "Search for microscopic black holes in pp collisions at s = 7 TeV". Journal of High Energy Physics. 2012 (4): 61. arXiv:1202.6396. Bibcode:2012JHEP...04..061C. doi:10.1007/JHEP04(2012)061.
  9. 1 2 ATLAS Collaboration (2013). "Search for microscopic black holes in a like-sign dimuon final state using large track multiplicity with the ATLAS detector". Physical Review D. 88 (7): 072001. arXiv:1308.4075. Bibcode:2013PhRvD..88g2001A. doi:10.1103/PhysRevD.88.072001.
  10. 1 2 ATLAS Collaboration (2014). "Search for Quantum Black-Hole Production in High-Invariant-Mass Lepton+Jet Final States Using Proton–Proton Collisions at s = 8 TeV and the ATLAS Detector". Physical Review Letters. 112 (9): 091804. arXiv:1311.2006. Bibcode:2014PhRvL.112i1804A. doi:10.1103/PhysRevLett.112.091804. PMID 24655244.
  11. 1 2 ATLAS Collaboration (2014). "Search for microscopic black holes and string balls in final states with leptons and jets with the ATLAS detector at s = 8 TeV". Journal of High Energy Physics. 2014 (8): 103. arXiv:1405.4254. Bibcode:2014JHEP...08..103A. doi:10.1007/JHEP08(2014)103.
  12. 1 2 3 ATLAS Collaboration (2016). "Search for strong gravity in multijet final states produced in pp collisions at s = 13 TeV using the ATLAS detector at the LHC". Journal of High Energy Physics. 2016 (3): 26. arXiv:1512.02586. Bibcode:2016JHEP...03..026A. doi:10.1007/JHEP03(2016)026.
  13. I. Antoniadis; N. Arkani-Hamed; S. Dimopoulos; G. Dvali (1998). "New dimensions at a millimeter to a Fermi and superstrings at a TeV". Physics Letters. B436 (3—4): 257—263. arXiv:hep-ph/9804398. Bibcode:1998PhLB..436..257A. doi:10.1016/S0370-2693(98)00860-0.
  14. O. DeWolfe; A. Giryavets; S. Kachru; W. Taylor (2005). "Type IIA moduli stabilization". Journal of High Energy Physics. 0507 (7): 066. arXiv:hep-th/0505160. Bibcode:2005JHEP...07..066D. doi:10.1088/1126-6708/2005/07/066.
  15. S. Dimopoulos; G. Landsberg (2001). "Black holes at the LHC". Physical Review Letters. 87 (16): 161602. arXiv:hep-ph/0106295. Bibcode:2001PhRvL..87p1602D. doi:10.1103/PhysRevLett.87.161602. PMID 11690198.
  16. S. Giddings; S. Thomas (2002). "High-energy colliders as black hole factories: The End of short distance physics". Physical Review. D65 (5): 056010. arXiv:hep-ph/0106219. Bibcode:2002PhRvD..65e6010G. doi:10.1103/PhysRevD.65.056010.
  17. G. Giudice; R. Rattazzi; J. Wells (2002). "Transplanckian collisions at the LHC and beyond". Nuclear Physics. B630 (1): 293—325. arXiv:hep-ph/0112161. Bibcode:2002NuPhB.630..293G. doi:10.1016/S0550-3213(02)00142-6.
  18. D. Bourilkov (1999). "Analysis of Bhabha scattering at LEP2 and limits on low scale gravity models". Journal of High Energy Physics. 9908 (8): 006. arXiv:hep-ph/9907380. Bibcode:1999JHEP...08..006B. doi:10.1088/1126-6708/1999/08/006.
  19. K. Cheung; G. Landsberg (2000). "Drell-Yan and diphoton production at hadron colliders and low scale gravity models". Physical Review. D62 (7): 076003. arXiv:hep-ph/9909218. Bibcode:2000PhRvD..62g6003C. doi:10.1103/PhysRevD.62.076003.
  20. T. Rizzo (1999). "Using scalars to probe theories of low scale quantum gravity". Physical Review. D60 (7): 075001. arXiv:hep-ph/9903475. Bibcode:1999PhRvD..60g5001R. CiteSeerX 10.1.1.389.2079. doi:10.1103/PhysRevD.60.075001.
  21. G. Shiu; R. Shrock; S. Tye (1999). "Collider signatures from the brane world". Physics Letters. B458 (2—3): 274—282. arXiv:hep-ph/9904262. Bibcode:1999PhLB..458..274S. CiteSeerX 10.1.1.344.7811. doi:10.1016/S0370-2693(99)00609-7.
  22. C. Balazs; H-J. He; W. Repko; C. Yaun; D. Dicus (1999). "Collider tests of compact space dimensions using weak gauge bosons". Physical Review Letters. 83 (11): 2112—2115. arXiv:hep-ph/9904220. Bibcode:1999PhRvL..83.2112B. doi:10.1103/PhysRevLett.83.2112.
  23. N. Arkani-Hamed; S. Dimopoulos; G. Dvali; J. March-Russell (2002). "Neutrino masses from large extra dimensions". Physical Review. D65 (2): 024032. arXiv:hep-ph/9811448. Bibcode:2002PhRvD..65b4032A. doi:10.1103/PhysRevD.65.024032. Архивировано 19 июня 2020. Дата обращения: 12 июня 2022.
  24. G. Dvali; A. Yu. Smirnov (1999). "Probing large extra dimensions with neutrinos". Nuclear Physics. B563 (1—2): 63—81. arXiv:hep-ph/9904211. Bibcode:1999NuPhB.563...63D. doi:10.1016/S0550-3213(99)00574-X.
  25. Y. Grossman; M. Neubert (2000). "Neutrino masses and mixings in nonfactorizable geometry". Physics Letters. B474 (3—4): 361—371. arXiv:hep-ph/9912408. Bibcode:2000PhLB..474..361G. doi:10.1016/S0370-2693(00)00054-X.
  26. N. Arkani-Hamed; L. Hall; H. Murayama; D. Smith; N. Weiner (2000). "Neutrino masses at v3/2". arXiv:hep-ph/0007001.
  27. N. Arkani-Hamed; M. Schmaltz (2000). "Hierarchies without symmetries from extra dimensions". Physical Review (Submitted manuscript). D61 (3): 033005. arXiv:hep-ph/9903417. Bibcode:2000PhRvD..61c3005A. doi:10.1103/PhysRevD.61.033005. Архивировано 12 июня 2022. Дата обращения: 12 июня 2022.
  28. N. Arkani-Hamed; Y. Grossman; M. Schmaltz (2000). "Split fermions in extra dimensions and exponentially small cross-sections at future colliders". Physical Review (Submitted manuscript). D61 (11): 115004. arXiv:hep-ph/9909411. Bibcode:2000PhRvD..61k5004A. doi:10.1103/PhysRevD.61.115004.
  29. D. E. Kaplan; T. Tait (2001). "New tools for fermion masses from extra dimensions". Journal of High Energy Physics. 0111 (11): 051. arXiv:hep-ph/0110126. Bibcode:2001JHEP...11..051K. doi:10.1088/1126-6708/2001/11/051.
  30. G. Branco; A. de Gouvea; M. Rebelo (2001). "Split fermions in extra dimensions and CP violation". Physics Letters. B506 (1—2): 115—122. arXiv:hep-ph/0012289. Bibcode:2001PhLB..506..115B. doi:10.1016/S0370-2693(01)00389-6.
  31. N. Arkani-Hamed; L. Hall; D. R. Smith; N. Weiner (2000). "Flavor at the TeV scale with extra dimensions". Physical Review D. 61 (11): 116003. arXiv:hep-ph/9909326. Bibcode:2000PhRvD..61k6003A. doi:10.1103/PhysRevD.61.116003.
  32. M. Ajello; et al. (2012). "Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT". Journal of Cosmology and Astroparticle Physics. 2012 (2): 012. arXiv:1201.2460. Bibcode:2012JCAP...02..012F. doi:10.1088/1475-7516/2012/02/012. {{cite journal}}: line feed character в |title= на позиции 23 (справка)
  33. Bijan Berenji. Search for Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT (2012). Дата обращения: 12 июня 2022. Архивировано 25 октября 2021 года.

Дальнейшее чтение

[править | править код]