Антиплоский сдвиг (Gumnhlkvtnw v;fni)

Перейти к навигации Перейти к поиску

Антиплоский сдвиг или антиплоская деформация — частный случай напряжённо-деформированного состояния упругого тела. Такое состояние возникает когда поле перемещений является нулевым в рассматриваемой плоскости, но ненулевым в направлении, перпендикулярном к плоскости. В случае малых деформаций тензор деформаций может быть записан в виде

если рассматривается плоскость и вектор перемещений сонаправлен с осью .

Перемещения

[править | править код]

В состоянии антиплоского сдвига поле перемещений (в прямоугольных декартовых координатах) имеет вид:

где перемещения в направлениях осей .

Напряжения

[править | править код]

Для изотропного, линейно упругого материала, тензор напряжений, вытекающий из состояния антиплоского сдвига, может быть представлен в виде

где - модуль сдвига материала.

Уравнения равновесия в случае антиплоского сдвига

[править | править код]

В общем случае имеют место три уравнения равновесия. Однако, для антиплоского сдвига в предположении, что компоненты вектора массовых сил в направлении осей и равны нулю, они сводятся к одному уравнению следующего вида:

где - компонента вектора массовых сил, направленная вдоль оси и .

Отметим, что такое уравнение подходит только для случая бесконечно малых деформаций.

Приложения

[править | править код]

Гипотеза антиплоского сдвига используется при определении напряжений, вызванных винтовой дислокацией.